Quantcast
Viewing all articles
Browse latest Browse all 1015

high dimension Metropolis-Hastings algorithms

By xi’an

When discussing high dimension models with Ingmar Schüster Schuster [blame my fascination for accented characters!] the other day, we came across the following paradox with Metropolis-Hastings algorithms. If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations (corresponding to the blue sequence). Even when relying the scale that makes the proposal identical to the target! Resorting to a tiny scale like Σ/p manages to escape the unhealthy neighbourhood of the highly unlikely mode (as shown with the brown sequence).

Image may be NSFW.
Clik here to view.

Here is the corresponding R code:

p=100
T=1e3
mh=mu #mode as starting value
vale=rep(0,T)
for (t in 1:T){
prop=mvrnorm(1,mh,sigma/p)
if (log(runif(1))

Filed under: Books, Kids, Mountains, pictures, R, Statistics Tagged: acceptance probability, curse of dimensionality, high dimensions, MCMC, Metropolis-Hastings algorithm, Monte Carlo Statistical Methods, unmlaut Image may be NSFW.
Clik here to view.

Related

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...


If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

…read more

Source:: r-bloggers.com


Viewing all articles
Browse latest Browse all 1015

Trending Articles