Quantcast
Channel: r software hub
Viewing all articles
Browse latest Browse all 1015

twilight zone [of statistics]

$
0
0

By xi’an

mixture with unknown means

“I have decided that mixtures, like tequila, are inherently evil and should be avoided at all costs.” L. Wasserman

Larry Wasserman once remarked that finite mixtures were like the twilight zone of statistics, thanks to the numerous idiosyncrasies associated with such models. And George Casella had similar strong reservations about mixture estimation. Avi Feller and co-authors [including Natesh Pillai] have just arXived a paper on this topic, exhibiting shocking (!) properties of the MLE! Their core example is a mixture of two normal distributions with known common variance and known weight different from 0.5, which ensures identifiability. This is a favourite example of mine that we used for instance in our book Introducing Monte Carlo methods with R. If only because we can plot the likelihood and posterior surfaces. (Warning: I wrote those notes on an earlier version of the paper, so mileage may vary in terms of accuracy!)

The “shocking” discovery in the paper is that the MLE is wrong as often as not in selecting the sign of the difference Δ between both means, with an additional accumulation point at zero. The global mode may thus be in the wrong place for small enough sample sizes. And even for larger sizes: when the difference between the means is small the likelihood is likely to be unimodal with a mode quite close to zero. (An interesting remark is that the likelihood derivative is always zero at Δ=0 when considering the special case of both means equal to -Δ and to πΔ/(1-π), respectively, which implies that the overall mean of the mixture is equal to zero. A potential connection with our reparameterisation paper, maybe?)

The alternative proposed by Avi and …read more

Source:: r-bloggers.com


Viewing all articles
Browse latest Browse all 1015

Trending Articles